PHYSICAL REVIEW E 69, 021503 (2004
Mobility of extended bodies in viscous films and membranes
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We develop general methods to calculate the mobilities of extended bodies @ssociated withmem-
branes and films. We demonstrate a striking difference between in-plane motion of rodlike inclusions and the
corresponding case of bulkhree-dimensionalfluids: for rotations and motion perpendicular to the rod axis,
we find purely local drag, in which the drag coefficient is purely algebraic in the rod dimensions. These results
as well as the calculational methods are applicable to such problems as the diffusion of objects in or associated
with Langmuir films and lipid membranes. These methods can also be simply extended to treat viscoelastic
systems.
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[. INTRODUCTION (three-dimensional viscosities, respectively. A similar
length, constructed from the two-dimensional shear modulus
The motion of objects in biomembranes is important inand the fluid viscosity determines the scale of deformations
many cellular processes. These objects are in many caseentrolled by in-plane versus fluid stresses in the case of
extended, macromolecular inclusions such as protgif§  elastic or viscoelastic membrang2—14.
or “rafts” [5,6] of lipids. Thus, these can often be viewed as Here we consider the motion of extended objects of large
macroscopic objects moving in a continuum fluid environ-aspect ratio in quasi-two-dimensional systems such as a vis-
ment. Studies of the motion of such inclusions in am-cous or viscoelastic membrane surrounded by a viscous sol-
phiphilic films [3,4] and cell membranes have a long andvent. In such cases, both short- and large-range dissipation
interesting history. There are discrepancies in the early literacan play a role. We examine in detail the motion of rodlike
ture on protein diffusion in cell membranes, for instance,inclusions, but we present a general scheme for the calcula-
because of confusion over the applicability of three- versusjon of the translational and rotational mobilities of arbitrary
two-dimensional diffusion to this ca$é,8]. One of the most  gytanded bodies in membranes. Furthermore, we do not con-
important contributions in this area was that of Safffi@h  giqer the precise mechanisms of incorporation into or asso-
who noted that the two-dimensional motion in real mem-jasion with the film. Examples of this might include electro-

branes induces flows in the surrounding bufthree- : e . . o
) . . . . static association of biopolymers with charged lipids or
dimensiongl fluid. He showed that the linearized Stokes law roteins within a lipid bilayeF15]. In many such cases, how-

does not describe the motion of inclusions in or bound td’ : .
membranes. Rather, this represents a singular perturbatioer\l/er’ the hydrodynam|cs_ W'". be governed by larger length
problem, and the drag coefficient is not a linear function ofScales, where such details will not matter. . '
its size and the viscosity. In fact, the dependence is logarith- Even for the case of the _motlpn of 5|mpl_e, rod_hke objects
mic, and thus the mobilities and diffusion coefficients of pro-IN & bulk Newtonian fluid(i.e., in three dimensions the
teins in membranes are nearly independent of the objectg&ituation is subtlé?,l_G,lﬂ. _For instance, for el_ther |nf|n!tely
size, in practice. long rods in three dimensions or for the motion of pointlike
Furthermore, there is a length scale determined by th&bjects in two dimensions, there is no true low-Reynolds
ratio of membrane and fluid viscosities that determines thé@umber regime(i.e., linear hydrodynamigs[18]. Specifi-
degree to which the dissipation is predominantly two or threecally, there is no linear drag coefficient for such a system: the
dimensional[8,7,9-11. We call this length€y= 5.,/ 7;, drag force does not depend linearly with velocity. For finite
where 7, + are the membranéwo-dimensional and fluid  length rods and small enough velocities, however, there is a
linear drag coefficient. The drag coefficients for motion par-
allel and perpendicular to the rod axis are given by
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per unit length, wheré is the rod lengtha is its radius, and The fundamental distinction between the well-known re-
A is a constant of order unity, depending on the precise gesult for the hydrodynamic drag on a rod in a homogeneous,
ometry. three-dimensional viscous material and our result for the

We examine here a variant of this hydrodynamic problemdrag on a rod embedded in a viscous membrane coupled to a
in which the rigid rod lies in a two-dimensional interface thatviscous, three-dimensional fluid is the appearance of the
is viscously coupled to a bulk, Newtonian liquid phase. Thelength scalefy. This length enters since the ratio of a two-
generalization of this problem to the motion of such a roddimensional interfacial viscosityy, and the usual viscosity
embedded in a viscoelastic film is straightforward. There arey; of the bulk fluid has dimensions of length,
many physical realizations of motion in viscous and vis-

coelastic films. These include, for instance, the motion of _ m

. o lo= : (2
extended, membrane-associated proteins in or on the surface
of lipid bilayers[1,2]. Our work here is also motivated by 27

recent experiments that have demonstrated the possibility of

constructing and making quantitative measurements on viskhe denominatorX » is the sum of the viscosities of the
coelastic films that closely resemble cellular structures sucHuid above the interfacé&he superphasend fluid below the

as theactin cortex[12]. Driven motion of rods in viscous/ membrangthe subphagein the general case of two differ-
viscoelastic films has also been used to determine rheologent viscositiegor one vanishing one, in the case of Langmuir
cal properties, e.g., of monolay€e20,21]. In addition, the films). For a membrane embedded in a uniform fluid of vis-
understanding of this problem will allow the quantitative in- cosity », this is> »=27. In general, however, we may have
terpretation of the thermally excited angular fluctuations oftwo distinct nonzero viscosities. For a Langmuir monolayer
microscopic rodlike particleésuch as fd virugin or associ- we haveX »= 7, since we can neglect the viscosity of air.
ated with viscoelastic interfaces. Such hydrodynamic studieErom here on, however, we shall simply use the length
may also shed light on the dynamics of inclusions and transand »; for the sum of the viscosities of the two bulk fluids
membrane protein complexes in fluid cell membranes. Fursurrounding the membrane. Throughout this paper we mea-
thermore, we note that calculational methods developed isure all lengths in terms of the fundamental lengghexcept
this work allow one to compute the hydrodynamic drag ofwhere explicitly stated to the contrary.

irregularly shaped objects embedded in the film. Such ob- There are three independent drag coefficients or particle
jects can be, e.g., fractal aggregdt®d], or lipid rafts in call  mobilities to determine in the problem. The mobility tensor
membranes. is the inverse of the drag coefficient tensor. For translational

We find two principal results{i) for small objects(spe-  motion, the mobility tensop;; of the rod in the membrane is
cifically, for whichL<¢,), the drag coefficients become in- defined by
dependent of both the rod orientation and aspect ratigiand
for larger rods of large aspect ratipy, becomes purely linear vimd:,uij Fi, (©)
in the rod lengthL—i.e., the drag becomes purely local. In

; . . . rod ; ; ;
contrast, we find that the well-established three-dimensiona¥herev;™"is theith component of the velocity of the rod and
result{|=2m5/In(AL/a) applies for motion in the film par- F;j is thejth component of the force applied to the rod. By
allel to the rod axis, provided that>{,. Here, however, the in-plane rotational symmetry combined with the——n
effective rod radius becomey, rather than the physical ra- symmetry of the rod, the mobility tensor must take the form
diusa, whena<{,. Closely related tdii), we find that the L L
rotational drag (equivalently diffusion constantdepends Mij = g Ninj+ w (85— ning). 4
purely algebraically on the rod length.

We consider only the most simple class of rod geometrie§lerex, andw are the mobility of the rod dragged perpen-
in that we assume the rod to have a circular cross section iflicular to and parallel to its long axis, respectively. In addi-
the plane perpendicular to its axis. We take the radius of thdion to these two independent translational mobilities, there
circle to bea, while the length of the rod is given Hy. The is also one rotational mobility. linking the angular veloc-
geometry of this rod of |ength and radiusa is then param- |ty .Of the.rOd to the torque applled to that rod about its center
etrized by only one dimensionless ratio, the aspect ratio Of inversion symmetry.

defined by It should be noted thay there is no hydrodynamic torque
acting on the rod when it is dragged by any force acting

L through the center of inversion symmetry of the rod. We

P= 53 (1) refer to these forces as “central.” This can be seen from the

following argument: Torque in the two-dimensional plane is

The long axis of the rod may be assumed to be terminated bE pseudoscalar that must be odd under time reversal. Such a

spherical end caps although, as will be seen below, our caf-
culation is not sensitive to the fine structure of the ends due ™ - . -
to our introduction of a short distance cutoff in the problem.axis of the rodn. That combinatiore,zv ,ng must also be

We will argue below, however, that for the case of largesymmetricunder n— —n since the rod is symmetric upon
aspect ratio rods, the detailed structure of the end caps wiluch transformation. Thus the only available pseudoscalar is
have a negligible effect on the overall drag. disallowed. Therefore there is no rotational motion gener-

seudoscalar can only be built out of the antisymmetric com-

ination of velocity vector of the rod and a vector along the
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ated by this class of central forces and the rotational degrewhere the scalar functionsiwa|,—iwa, of the distance

of freedom decouples from the two translational degrees obetween the point of the force application and the measure-

freedom. We further note that boundary conditions that breaknent of the velocity field are given by

rotational symmetry or the application of a force at a point

other than the center of symmetry violate the above assump-

tions and thus allow a coupling of the rotational and transla- —! wau(wi):m

tional motions of the rod. m
We approach the solution of this problem by two compli- @)

mentary means. In the first part of the calculation, in Secgpg

Il A, we approximate the continuous rod by a series of discs,

in analogy to the Kirkwood approximation used in the cal-

culation of the drag on a rod in a uniform, three-dimensional —iwa, (X,0)=

viscous environmeritl7]. This calculation allows one to in-

corporate the details of the shape of the rod in the resulting

drag coefficient. Here the shape of the rod is parametrized in + 2 Z[Y (2)—Y,(2)]

terms of its dimensionless aspect ratio. This method, how- 2 240 z

ever, becomes numerically difficult in the limit of large as-

pect ratios, i.e., for very long, thin rods. In this limit we may whereH, are Struve functionf23] andY, are Bessel func-

proceed by a second approximation that assumes the rod tiens of the second kind. We note=|x|/ €, is the distance

be infinitely thin—i.e.,L>a. Here, we also restrict our at- between the point of force application and the membrane

tention to the limita<<{,. velocity response measured in the flat membrane in units of
The outline of the remaining parts of this paper is as fol-fo. At this point, it is important to distinguish between the

lows. In Sec. Il A we develop the first of two calculational two response functions introduced: the mobility tensor of the

methods for determining the drag on rodlike objects embedrod w;; gives the velocity responsg of the rod given a total

ded in the membrane. Then in Sec. Il B we demonstrate #orce F; acting on it through its center. The response func-

second approach to determine the drag on a rod. This apion —iwa;;(x—X") gives the velocity responsg(x) of the

proach is optimized to work in the limit of high aspect ratio two-dimensionafluid at the positiorx due the application of

rods and compliments the first approach which is most effia point force F;(x’) at another pointx’ in the two-

cient for rods of small aspect ratio, i.e., less elongated obdimensional fluid. The main purpose of this and the follow-

jects. The reader who wishes to examine the results of theseg section of the paper is to derive the former response

calculations without delving into their details may skip to function for the rod from the latter response function for the

Sec. lll, where the drag coefficients for translational motionfluid, which we have previously calculat¢#2].

parallel and perpendicular to the long axis of the rod are We note also that, due to the linearity of the underlying

computed for a variety rod geometries. In addition we exJow-Reynolds number hydrodynamics, the velocity response

plore the rotational drag on these rods there. Finally, we conproduced at some point in the membrane by a collection of

clude and discuss our results in Sec. IV. point forces is simply the sum of the response functions ap-

propriate to each point force individually

T 2 @
;Hl(z)— 7 E[Yo(z)"'Yz(Z)]

a
T | oD~ S Hi(D

, ®

Il. THE RESPONSE FUNCTION N
A. By the Kirkwood approximation vo(X)=—1 wn§=:1 @ qp(X—Xn) f 5(Xn) ©)

To incorporate the correct dynamics of this coupled sys- . ) . .
tem, we use the results of our previous calculafid] for Wher_en indexes theN point forces located at Ipcatlomg in
the displacement response of the membrane at a positionthe film. Clearly the sum may be converted into an integral
due to the application of a force localizedxdt In the pre- ~ for the case of a continuous force distribution; we will ex-
vious work where we considered a generic viscoelastic ma@mine FhIS limit for Fhe case of an infinitely thin rod of finite
terial, the response functian(x—x’,w) determines thelis-  1ength in the following section. _
placemenatx due to a sinusoidally oscillating forcext. In Using this superposition principle we may determine the
this paper, we specialize to the case of a purely viscous filngfféctive drag on a rod by employing the two-dimensional
so it is more natural to write the membravelocityresponse ~ 2nalog of the Kirkwood approximation used to calculate the
to a point force localized at’. For consistency of notation nydrodynamic drag on a rod in three dimensions. Specifi-

we write this velocity in terms of the displacement responseC@/ly, we replace the rod of lengthand cross-sectional ra-
—iwa. The velocity response function is given by dius a by a set ofn+1 disks of radiusa and intersphere

separationb chosen so that the total length of the rod is
Va(X)=—iwa,g(Xx—=X")f5(X"), (5)  preserved, i.eL=nb+2a. See Fig. 1. In this way, the aspect
ratio of the rod,p=L/a can be fixed. The number of disks,
of course, can be varied, however, we will always choose
that number to be the maximal number consistent with a
L L given aspect ratio and the noninterpenetrability of the disks.
@ ,5(X) = a)(|X)X X g+ (X[ 8= XaXg], (6)  We have also shown that computed hydrodynamic drag on

which can be written in a closed form as
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FIG. 2. (Color onling The upper figure shows the film from the
top looking down. The rod is shown as the black line and the film is
Z shown in gray(blue onling. The rod is assumed to be embedded in
Side View the film, but not in the bulk subphase below it. This subphase is
shown in the lower figure, which pictures the system from a side

N . . view. In this paper the Newtonian subphase is assumed to be infi-
FIG. 1. Approximating the continuous rod by a series of balls of

nitely deep.
radiusa with center-to-center separatibnThe number of balls and y P
their separation is chosen so that collection of balls has the same nel
length L as the original rod. For the best approximation to the v=—iw> (D), (11)
original rod, we maximize the number of balls for a given aspect =]

ratio of the original rod.
where we have suppressed the vectorial indices, defifiéd

the rod is only weakly dependent on the number of digks to be the velocity of thé" sphere at positiox("), and re-
equivalently on the interdisk separatjon written the mobility tensor using E@8) and the definition:

Our strategy for computing the drag on the rod involves
setting the rod in uniform motion with unit velocity by im-
posing some set of forcd§), i=1,... n+1 on then+1
disks that make up the rod. Clearly the total force on the rod
which is equal to the effective drag coefficient is simply the
sum of those forces:

iD= g, (xW —x() (12

The solution for the forces on the individual beads and thus,
using Eq.(10), the total force on the rod and equivalently the
hydrodynamic drag is then obtained by inverting the
(n+1)X (n+1) matrix of response functions{’) . We call
this inverse matrixM 'l defined by

n+1
Fo=> f0=¢40,. (10) I R
= Fre M ==(aj HD. (13
Using Eq.(9) we can compute the velocity field for a given The drag coefficient is then
collection of point forces. However, to determine the effec- N+l
tive drag on the rod, one needs to insist that all the beads (= M (14)
have thesamegiven velocity and determine the forces ap- + iz

plied to them to ensure this result.

For definiteness, we first discuss the drag on the rod whewhere we have used E¢L0) and the fact that each bead
moving perpendicularly to its long axis. We may then di- making up the rod has a velocity of unity. The analogous
rectly write out the analogous solution for motion parallel to€xpression from the drag on the rod moving parallel to its
the long axis of the rod. Motion of the rod along any arbi- long axis is then obtained by replacing the terms of the mo-
trary direction in the plane relative to its long axis can bebility matrix M (1) with M {1 since here all the bead ve-
obtained from these two results using the linearity of probJocities are parallel to the separation vectors between the
lem. Thus these solutions span all possible linear motions dfeads. We then have
the rod. We will return to rotational motion shortly.

To calculate the drag on the rod moving perpendicular to
its long axis(see Fig. 2 we first apply Eq(9) to determine
the velocity of alln+1 spheres making up the rod as a
function of as yet unknown forces. We insist only, based orand the complete solution for motion of the rod in the plane
the symmetry of this problem, that these forces are also pegrt an arbitrary angle> with respect to its long axitsee Fig.
pendicular to the rod’s axis. Thus, 2) is given by

n+1

§|\=ij§=:l Mﬁ”), (15)
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{(¢)={ cosp+{, sing. (16) density over the length of the rod to find the total force
necessary to move the rod with a velocity of unity. This force
It is perhaps not surprising that the drag on the rod doets clearly just the drag coefficient that we sought.
not have a simple, closed-form solution in the general case. The inversion of Eq(17) proceeds by first expanding the
Here we examine the results of a numerical calculation ofinear force density in Legendre polynomial,(2x/L).
these drag coefficients. The results depend on two paranf=rom symmetry considerations we can expand the force den-
eters reflecting the relative magnitudes of three lengths insity in even Legendre polynomials, i.e.,
volved in the problem. We report our results in terms of the
two dimensionless numbers introduced above: the overall
length of the rod(i.e., the linear dimension of its long axis f(X)ZnZO CanPan(2xX/L) (18)
measured in units ofy, L/€,, and the aspect ratio of the rod
L/a. for both the perpendicular and parallel dragging calculations,
while we expand the force density in odd Legendre functions
B. Thin-rod approximation to study the rotational drag on the object. In what follows,
As a calculation tool, the above Kirkwood approximation we only _describe in. detail the.case of Iinear _drag, although
. : . the rotational case is very similar. The coefficieatsare as
has one shortcoming. If one wishes to explore the drag on 3ot unknown. since the functioh(x) is undetermined. In
very thin rod compared to its length, i.e., one of high aspecy o . . '
. . . rinciple, since the Legendre polynomials form a complete
ratio, one is compelled to use a large number of disks. hy

fact, the number of disks is linearly proportional to the aspec S:Xn :zgslgge;\;ﬁ tgs;r 1r,0\a/1ir:jyegply§|ecgljgacteo(ijr?fri]:iltty Icr?n
ratio of the rod being modeled. Since even numerically in- P P Y.

verting a large matrix is cumbersome, the penultimate step i@:tli%tlctehi\gesl:lgwdts)'(gsesIt?::at fri]rl;,rtnf?a:/l\??;rrrizugkier:/e?nrcv)h:cncgﬁ:t-
the procedure outlined above becomes slow in the high as; 9 J ’ g

pec o i Fortunately,tere 15 « complementary apls STl O e force disibuton about e certer of e
proach to the Kirkwood scheme that involves inverting a__," 9

more manageable matrix and is still valid for exploring rodscaluasc;ﬁur;]cgee;s :ﬁg% I'qnoﬂﬁep;grsceenggggittexftr'om Etf) we
of infinite aspect ratio, or specifically, rods of finite length, 9 P y

but vanishing thickness. Since it is precisely in this limit of can rewrite Eq(17) as

N

large aspect ratio that the Kirkwood approximation becomes N L2

intractable, the combination of these two approaches allows  y(x)=—jw >, c,, a(X—2X)P,n(22/L)dz. (19)
us to study the drag on rod for both large and small aspect n=0 —LP2

ratios.

The thin-rod approximation starts from the assumption’o further simplify the analysis, we relax the requirement
that one can take the limit of an infinitely thin rod from the that the velocity field be equal to unity at all points along the
start. Thus the velocity field at the poirtdue to a continu- rod. Rather we impose this gondltlon at a.flnlte set of points
ous distribution of force densities along the rdi(xi) that 0=p;=L/2 along the rod. Given that we intend to truncate

i | hex axis f _ _ /2 takes the f the Legendre function expansion of the force densitiNat
les along thex axis fromx= —L/2 tox=L/2 takes the form o can impose the velocity condition at a maximumnof

L2 A A +1 points without creating an over-determined system of
vi(x)= —iwf aij(x—px)f;(px)dp. (17 equations. Thus we require that
—L/2
v(pix)=0, for i=0,...N, (20)

The indices in the above equation represent the usual vecto-

rial indices; there are no disks to count here. There has been N L2

a simplification introduced in Eq17). The integral over the 1=—iw Y, Cyp a(Xp;—zX)Pon(22/L)dz
force densityf(x) which in principal extends over the entire n=0 —L/2

volume of the rod has been made one dimensional by assum-

ing the rod to be infinitely thin. This simplification is pos- for i=0,...N. (21)
sible since the short distance behavior of the response func-
tion includes only an integrable singularity. Now finding the force distribution along the rod requires

After writing Eq. (17) one is still faced with the problem only the inversion of anN+ 1)< (N+ 1) matrix, \j; whose
of inverting the equation. After all, the assumed rigidity of components are defined by
the rod requires that(x) be constant along the rod, but force P
on any length element of the infinitely thin rod are unknown - D
as they comprise both the externally applied for and, as yet Nij= wa /za(Xp' 2X)Py(22/L)dz @2
undetermined internal forces of constraint. Our method of
solution is fundamentally identical to that used in the precedFinally, the total force on the rod is found by reconstructing
ing section; we impose a unit velocity field on the rod andthe force density from its Legendre polynomial expansion
determine the force density required to affect his re$(Hj, and integrating the resulting expression over the entire rod.
We use this intermediate result by integrating the linear forcelhat force density is given by E¢L8) where the coefficients
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FIG. 3. Parallel drag coefficient of a rod for various aspect FIG. 4. Perpendicular drag coefficient of a rod for various aspect
ratios. ratios.

c, are determined by solving the set of equations €€) aspect-ratio curves from the=c curve shown as the solid
using the inverse of the matrix defined in Eg2). Thus we line in the figure. It should be noted that the finite-aspect-
find ratio calculations were performed using the Kirkwood ap-
proximation, while the drag on the infinitely thin rog (
. =) is calculated using the thin-rod approximation.
C= i:EO Nii™ (23) The analogous calculation can be made for the drag on the
rod moving in a direction perpendicular to its long axis.
Due to the orthonormality of the Legendre polynomials, theTh'el'?]i rceosrllj\llt:ra(reis: %\;vrt-lhlg fllzll(i]teélas ect-ratio rod results to-
total force is given entirely by the coefficient of the zeroth wards the infin?te aspect ratio resultg clearly tests the consis-
Legendre polynomialc,. Similarly, the total torque in the f the t pect | hes t yd lculati
case of rotations is given by the coefficient of the first oddtency of the two numerical approaches fo drag caicuiation.
To study in more detail the aspect ratio dependence of the

Legendre polynomial. - .
There remains one more aspect to this calculation. Hov5irag we plot _the drag qoefﬂuent for parallel motid¥ig. 5)
%nd perpendicular motiofFig. 6).

does one determine the accuracy of the approximation an In both, Figs. 5 and 6 the length of the rod was held

how can one optimize that accuracy by the selected set of - . .
points along the rod; ,i=0, . .. N, at which to impose the constant so thdt/ ¢ ,=20. As discussed above particle shape

velocity boundary condition? We first judge the accuracy off> less re'.ev"?“.’“ for particles with dimensions less thigrso
the result by calculating the velocity field along the rod. Ide-2 rod of significantly longer length was chosen to explore the

ally the value of the velocity should be unity. Because Weaspect—ratio dependence of the rod’s drag coefficient. To ob-

have only imposed that boundary condition at a discrete seto Ve the Importance of the particle sm\easured in the
of points along the rod, the velocity field along the rod Var_natural units oft,) we plot the aspect-ratio dependence of

ies. We find that with only eleven points chosen symmetri—the drag coefficient of a rod of length @d. The drag coef-

cally about the center of the rdde., N=5 above, the ve- qun?t of me ;ﬁd r(;]ovmg pfz?_rgllelttofﬁ Ion%ams IS shown in
locity field deviates from unity by at most 5% in most cases 9. 7, while the drag coetlicient of the rod moving perpen-

However, we find that the drag coefficiefdefined by the dicular to its long axis is shown in Fig. 8.

ratio of total force to average velocjtgonverges much more It may g'e otf;;erved ffrom a I(I:olmé)arlson dOf the pa&rs IOf
rapidly with N. Specifically, we find a variation of less than a corresponding Tigures for parafiel drag and perpendicuiar

percent in the drag coefficient in all cases, so longNas drag, such as 7 vs 8, 5vs 6, and 3 vs 4, that the perpendicular

>2. Below, we report our results fdé=5. We thus are able
to achieve better than 1% accuracy with only a® matrix.

N

4 T T T T T T

ll. RESULTS ;L |
Figure 3 shows the parallel drag coefficient for a rod as a 8.

function of its lengthL/€, in reduced units. Two finite as- 4Ny,

pect ratios, as well as the case of infinite aspect ratio, i.e., an 2F :

infinitely thin rod, are shown in this figure. As expected,
based on the above discussion, the shape of the rod and thus
its aspect ratio do not affect the drag on the rod in the limit ' L L ' ' L
that all dimensions of the rod are small compared(to 5 10 1ps 20 2 30
Essentially all small rodlike particles behave in the mem-

brane as if they were infinitely thin. For rods longer than this  FIG. 5. The parallel drag coefficient of a finite-aspect-ratio rod
crossover length, the shape of the rod clearly affects its hyas a function of aspect ratjo The result for an infinite-aspect-ratio
drodynamic drag as seen by the deviation of the finiteis shown as a horizontal line. The length of the rod i€ 20
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FIG. 6. The perpendicular drag coefficient of a finite-aspect- FIG. 8. The pe_rpendlcular drag coefficient of a flnl_teja_spect-
ratio rod as a function of aspect ratjp, The result for an infinite-

ratio rod as a function of aspe<_:t rapo The result for an infinite- .aspect ratio is shown as a horizontal line. The length of the rod is
aspect ratio is shown as a horizontal line. The length of the rod i) 1¢
. 0.

200,
now of the order off, (for a<{,). On one hand, the three-
drag coefficient is strictly larger than the parallel drag coef-dimensional result recovered is not surprising, given that
ficient for rods of all aspect ratiogreater than one, i.enot  corresponds physically to a length scale beyond which the
disk9 and lengths. The magnitude of the difference betweerfluid viscosity dominates the film viscosity. Furthermore, the
these two drag coefficients, however, depends on the lengitorresponding fluid velocity field in this case both respects
of the rod compared with the natural length. For lengths the assumed incompressibility of the film, and is the same as
such asL<{,, the two drag coefficients converge to the that of rod motion in a fluid above this length. Thus,{,
same value and the difference between these coefficientietermines the effective aspect ratio. The case of perpendicu-
grows monotonically with increasing rod length. As an ex-lar motion, on the other hand, is qualitatively very different.
ample, the two drag coefficients are plotted as a function ofye find
rod length for infinite-aspect-ratio rods in Fig. 9.
The two coefficients begin to separate at rod lengths of
the order off ;. This differs not only from the small rod limit  ere  the corresponding bulk fluid velocity field in the ab-
but also from the case of motion in bulk fluids, where thegence of the film is inconsistent with incompressibility of the
two drag coefficients differ only by a constant factor of 2. i, - Specifically, there is a nonvanishing two-dimensional
The length dependence here can be understood by noting thgergence of velocity field restricted to the plane of motion
€o sets the natural length scale over which the two-to motion perpendicular to the rod axis. Hence, although
0_I|me_n3|0nal fluid velocity fleld_can vary. I_n detail, v_vhat We only the bulk fluid viscosityy enters this expressiofto be
find is that the parallel drag in the film is essentially un-gynected since dissipation is dominated at the largest scales
changed from the bulk, three-dimensional drag, in that " the fluid viscosity, the in-plane incompressibility re-
quires that the fluid velocity field extends over distances
comparable to the largest dimensibnThis means that the
usual hydrodynamic coupling of portions of the r@épre-

. . ) sented by the logarithyris not present. The result is a drag
where the prefactor in the logarithm has been determined t@qeficient purely linear in rod length. In other words, the

within 1%. Comparing with the result for drag of a rod in a drag is effectivelylocal in character.
bulk fluid, the effective cross-sectional radius of the rod is

{, =2mylL. (25

2L
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FIG. 9. A comparison of the perpendicular and parallel drag
coefficients as a function of rod length for a rod of infinite-aspect
FIG. 7. The parallel drag coefficient of a finite-aspect-ratio rodratio. Note that the difference between the two coefficients is a
as a function of aspect ratj@ The result for an infinite-aspect ratio monotonically increasing function of rod length and that the two
is shown as a horizontal line. The length of the rod istg.1

coefficients begin to diverge at the lendth=¢ .
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8 . T T wood method, which approximates the rod as a series of
non-interpenetrating disks linked together and is well suited
ml | to calculating the drag coefficients for rods of smaller aspect
ratio. The aspect ratio is set by choosing the number of these
¢ noninterpenetrating disks to make up the rod. For very long,
C—: 41 . thin rods having higher aspect ratios, this method becomes
. numerically cumbersome since it involves inverting an
nXxXn matrix for a rod made up of disks and reaching
higher aspect ratios requires adding more disks. To explore
the limit of very high aspect ratios, one can perform calcu-
> lations in the infinite-aspect-ratio limit. These two methods
In (L/4,) can be shown to be consistent numerically; in the limit of a
large number of disks, we have checked numerically that the
FIG. 10. The solid line is the ratio of the perpendicular dragresults of the Kirkwood method approach those of the thin-
coefficient to the parallel drag coefficient calculated in the thin-rodrod approximation.
approximation. The dotted lines are two different asymptotic fits to |t is instructive to contrast our results with those for the
this curve corresponding to short rods and long rods. For short rodghree-dimensional case. In three dimensions, there is a
this fit is to the constant one consistent with the Saffman-Delbru length-independent factor of 2 difference between the paral-

cussed in the text.

. . ) 3 2m7L
Finally, we note the result for the rotational drag coeffi- g ALY (26)
cient on the rod which gives the required torque applied to In(—)
rod about the center to generate an angular velocity of the

rod equal to unity. As discussed in the previous sections, this 3d 3d

calculation proceeds analogously to those of the perpendicu- =240 (27)
lar and parallel drag coefficients. We plot the rotational dra
coefficient divided byL? for a rod of infinite-aspect ratio as ; A
a function of the reduced length in Fig. 11. The essentiafjowrl of a purely local dragor, “free draining”). In other

feature of this plot is that rotational drag coefficient scales agvor'ds, the long-range hydrodynamic interactions between
L2 for rods smaller tharf, and then ad.? for rods longer various segments of the rod cause the drag on the rod to be

: . - reducedfrom simple linear dependence bras would be the
Lh;:/?otrhiﬁ Sgtt#rl?r;:?sngth. Thus, we find purely algebraic becase if the hydrodynamic drag on each element of the rod
' were purely local in character and thus the total drag additive
along the length of the rod. Instead, the motion of one part of
the rod sets up long-ranged fluid flows that effectively drag

Using the response function previously calculdeg] we ~ Other parts of the rod forward. _ _ _
have calculated the hydrodynamic drag on a rod moving at | he reduced dimensionality of the flow in the film quali-
low-Reynolds number in a viscous film coupled to fluid sub-t@tively changes this result as shown in E2d) and Fig. 9.
phase and superphase of arbitrary viscosity. The drag coeffl=Fom Fig. 10 it is clear that the two drag coefficients are
cient on the rod is a tensorial object with two independendual in the limitL<¢, (the dotted line for small/¢, is
parameters that correspond to the drag coefficient of the roaiMmPly unity), while in the limit thatL> ¢, they differ sub-
moving along its long axigparalle) and in the direction Stantially. In fact, as we argue here, we see an apparent,
perpendicular to its long axis. We have also computed th@urely local drag per unit length. Hence, the ratio of the two
rotational drag coefficient. dra_gs for long rods is given simply by the Iogarl'_[hm_ de-

These results were calculated numerically using twoScribed above, as can be seen by the asymptotic fit to a

methods with complementary regimes of validity: the Kirk- Icr)]gafrithm that is illustrated by the dotted line on the right of
the figure.

On one hand, while the dimensions of the rod are small
(<¥{y), the dissipation is governed primarily by the film,
which is insensitive to orientation and aspect ratio, just as it
is to size: there is only a weak, logarithmic dependence on
size in this limit[8]. On the other hand, when the rod be-
comes longefthant), the dependence on both orientation
and aspect ratio becomes stronger. Here, the three-
dimensional fluid governs the dissipation, and we know that

gThe appearance of the logarithm in EB6) signals the break

IV. SUMMARY

0.1 e
oor 01 1 10 100 1000 orientation and especially size matters in this limit. A major

L/¢, . : :
difference, however, arises when we compare parallel motion

FIG. 11. The rotational drag coefficient of a rod of infinite- With perpendicular motion. In the latter case, although the
aspect-ratio plotted vs the length of the rod. dissipation is governed primarily by the fluid, the filiedong
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with its assumed incompressibility and no-slip conditjons for all such small objects is simply that of a small disk. It is
imposes a very different boundary condition on the flowisotropic and independent of particle size except for logarith-
from what we would have in a bulk fluid alone. The velocity mically small corrections. For objects significantly larger
field v, in the film satisfies/, -v, =0, which is inconsistent than ¢, our analysis shows that drag tensor becomes both
with the Stokes flow in perpendicular motion. Considered a$ize dependent and anisotropic for rodlike objects. Based on
a two-dimensional fieldd,v ,+ d,v, is nonzero in the plane our calculations restricted to rodlike objects, it is nevgrthe—
of motion in this case. This added condition can only in-less clear that these general statements apply to objects of
crease the drag for perpendicular motion relative to tha@rbitrary shape as well. In particular for these rods, we find
without the film present. In contrast, since this boundary conthat the parallel drag coefficient matches that of a rod
dition is consistent with the flow field for parallel motion, we dragged parallel to its long axis in a three-dimensional vis-
expect to find quantitative agreement with the parallel mo£ous fluid. For the same rod dragged perpendicular to its

bility in a bulk fluid when the film's viscosity becomes irrel- length a qualitatively different result is found: the effective
evant(small €). drag coefficient is logarithmically enhanced compared to its

For the perpendicu]ar motion, not 0n|y is the drag in_three-dimenSional COUnterpart due to the breakdown of |Ong-
creased relative to that for a bulk fluid but the dependence igange hydrodynamic interactions in the interface and mo-
purely linear, as shown in Fig. 9. The linear dependence is afentum transfer to the bulk subphase. _
indication of the absence of the hydrodynamic effects de- While the heuristic importance of this new length scale is
scribed above, which reduce the drag by cooperativity oflear, we have not yet estimated its size for typical mem-
sections along the rod. Here, the drag is simply proportionaPranes. As a starting point, we note that if the membrane/
to the length of the rod. This can be seen from the additionanterfacial viscous were equal to that of the bulk, subphase,
boundary condition mentioned above. Although the dissipathis length would naturally be the thickness of the mem-
tion for long rods is governed by the fluid viscosity, the brane, i.e., a molecular length. For a short chain surfactant
characteristic scale for this flow is that of the whole rod.monolayer or lipid bilayer this length would then be of the
Unlike the case of perpendicular motion in a simple fluid,order of 1-2 nm, respectively. However, it is expected that
where there is a short path of order the rod diametiound the internal viscosity of the membrane/interface is typically
the rod, the in-plane incompressibility forces the flows to gomuch larger than that of théypically aqueous subphase
around the long way. Hence, the total absence of the logaand this lengtif is consequently multiplied by a factor equal
rithm, and the simp|e, pure|y local drag is proportiona| totO this ViSCOSity enhancement of the membrane/interfacial
length. This can be seen in Fig. 10, where we show the ratigraterial. It is not unreasonable to suppose tHat
of the drag coefficients is just given by the logarithmic term~10-100 nm. Thus we expect to see significant deviations
coming from the hydrodynamics of rods in ordinary fluids. from the Saffman-Delbmk result both for lipid rafts and
Finally, we note that these observations also explain why th@rotein aggregates that surpass such lengths. At the same
rotational drag is purely algebraic for long rods, since rotatime, it is clear that the standard Saffman-Detkuesult
tions exhibit a purely local drag or rod segments perpendicuShOU|d explain the observed mobility of individual trans-

lar to the motion. Specifically, as shown in Fig. 11, we find membrane proteins. _
Further experimental tests of the above theory require the

{r=0.16m7L3. (28) analysis of tracer particle diffusion data for a membrane/
interface bound objects of various sizes. Based on these cal-
In summary we have developed a highly adaptable frameculations, the observ_ation pf anisotropic diffusion constants
work to compute the drag on irregularly shaped objects emfor these longer rodlike o_bjects would be a clear indication
bedded in a viscous membrane or interface. As a demonstr® Pphenomena unexplainable by the Saffman-Delkru
tion of th|S method we have Computed the drag on a ng'd rodinalysis. After testing these basic m0b|l|ty Calculations, Qne
in th|s two_dimensiona| f|u|d System Viscous|y Coup|ed to acquld then use these I‘esultS to dO bOth Standard transla“onal
fluid subphase and compared our results to both the weliicrorheology on membranes and interfa¢e,13,23 as
known results for the drag on a rod in a three-dimensionalvell as experiments on rotational microrheold@#]. Such
viscous fluid and the result for the drag on a disk embeddegtudies will be particularly interesting in studying the prop-
in a membranedue to Saffman and Delbek), which is erties of broken rotational phases of lipid monolayers such as
applicable to, e.g., the diffusion of small transmembrane probexatic phasef25]. In addition one should be able to extend
teins. First, we find in accordance with the results of previ-the present calculations to explore the implications of mem-
ous investigator$7,10,11 that there is an inherent length brane hydrodynamics upon diffusion limited aggregation in
scale¢ in the system set by the ratio of the two-dimensionalMembranes. Such aggregation processes play an interesting
viscosity of the membrane to the three-dimensional viscosityole in the formation of transmembrane protein aggregates,
of the subphase fluid. The existence of such a length scale {id rafts, and colloidal aggregates on large, unilamellar
made obvious by dimensional analysis. The importance oYesicles[26].
this length scale on the drag tensor associated with various
objects embedded in the membrane has been discussed in
this work. In brief, for objects with characteristic dimensions
less thant, the Saffman-Delbrek result is recovered from A.J.L. would like to thank C. Alonso and other members
our more general computation. The drag coefficient tensoof the Zasadzinski group for frequent discussions. The au-
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