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Mobility of extended bodies in viscous films and membranes
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We develop general methods to calculate the mobilities of extended bodies in~or associated with! mem-
branes and films. We demonstrate a striking difference between in-plane motion of rodlike inclusions and the
corresponding case of bulk~three-dimensional! fluids: for rotations and motion perpendicular to the rod axis,
we find purely local drag, in which the drag coefficient is purely algebraic in the rod dimensions. These results
as well as the calculational methods are applicable to such problems as the diffusion of objects in or associated
with Langmuir films and lipid membranes. These methods can also be simply extended to treat viscoelastic
systems.
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I. INTRODUCTION

The motion of objects in biomembranes is important
many cellular processes. These objects are in many c
extended, macromolecular inclusions such as proteins@1,2#
or ‘‘rafts’’ @5,6# of lipids. Thus, these can often be viewed
macroscopic objects moving in a continuum fluid enviro
ment. Studies of the motion of such inclusions in a
phiphilic films @3,4# and cell membranes have a long a
interesting history. There are discrepancies in the early lite
ture on protein diffusion in cell membranes, for instan
because of confusion over the applicability of three- ver
two-dimensional diffusion to this case@7,8#. One of the most
important contributions in this area was that of Saffman@8#,
who noted that the two-dimensional motion in real me
branes induces flows in the surrounding bulk~three-
dimensional! fluid. He showed that the linearized Stokes la
does not describe the motion of inclusions in or bound
membranes. Rather, this represents a singular perturb
problem, and the drag coefficient is not a linear function
its size and the viscosity. In fact, the dependence is loga
mic, and thus the mobilities and diffusion coefficients of pr
teins in membranes are nearly independent of the obje
size, in practice.

Furthermore, there is a length scale determined by
ratio of membrane and fluid viscosities that determines
degree to which the dissipation is predominantly two or th
dimensional @8,7,9–11#. We call this length,05hm/h f ,
where hm, f are the membrane~two-dimensional! and fluid
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~three-dimensional! viscosities, respectively. A simila
length, constructed from the two-dimensional shear modu
and the fluid viscosity determines the scale of deformati
controlled by in-plane versus fluid stresses in the case
elastic or viscoelastic membranes@12–14#.

Here we consider the motion of extended objects of la
aspect ratio in quasi-two-dimensional systems such as a
cous or viscoelastic membrane surrounded by a viscous
vent. In such cases, both short- and large-range dissipa
can play a role. We examine in detail the motion of rodli
inclusions, but we present a general scheme for the calc
tion of the translational and rotational mobilities of arbitra
extended bodies in membranes. Furthermore, we do not
sider the precise mechanisms of incorporation into or as
ciation with the film. Examples of this might include electr
static association of biopolymers with charged lipids
proteins within a lipid bilayer@15#. In many such cases, how
ever, the hydrodynamics will be governed by larger leng
scales, where such details will not matter.

Even for the case of the motion of simple, rodlike objec
in a bulk Newtonian fluid~i.e., in three dimensions!, the
situation is subtle@7,16,17#. For instance, for either infinitely
long rods in three dimensions or for the motion of pointli
objects in two dimensions, there is no true low-Reyno
number regime~i.e., linear hydrodynamics! @18#. Specifi-
cally, there is no linear drag coefficient for such a system:
drag force does not depend linearly with velocity. For fin
length rods and small enough velocities, however, there
linear drag coefficient. The drag coefficients for motion p
allel and perpendicular to the rod axis are given by

z'52z i54ph/ ln~AL/a!
©2004 The American Physical Society03-1
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per unit length, whereL is the rod length,a is its radius, and
A is a constant of order unity, depending on the precise
ometry.

We examine here a variant of this hydrodynamic proble
in which the rigid rod lies in a two-dimensional interface th
is viscously coupled to a bulk, Newtonian liquid phase. T
generalization of this problem to the motion of such a r
embedded in a viscoelastic film is straightforward. There
many physical realizations of motion in viscous and v
coelastic films. These include, for instance, the motion
extended, membrane-associated proteins in or on the su
of lipid bilayers @1,2#. Our work here is also motivated b
recent experiments that have demonstrated the possibilit
constructing and making quantitative measurements on
coelastic films that closely resemble cellular structures s
as theactin cortex@12#. Driven motion of rods in viscous
viscoelastic films has also been used to determine rheo
cal properties, e.g., of monolayers@20,21#. In addition, the
understanding of this problem will allow the quantitative i
terpretation of the thermally excited angular fluctuations
microscopic rodlike particles~such as fd virus! in or associ-
ated with viscoelastic interfaces. Such hydrodynamic stud
may also shed light on the dynamics of inclusions and tra
membrane protein complexes in fluid cell membranes. F
thermore, we note that calculational methods develope
this work allow one to compute the hydrodynamic drag
irregularly shaped objects embedded in the film. Such
jects can be, e.g., fractal aggregates@19#, or lipid rafts in call
membranes.

We find two principal results:~i! for small objects~spe-
cifically, for which L!,0), the drag coefficients become in
dependent of both the rod orientation and aspect ratio and~ii !
for larger rods of large aspect ratio,z' becomes purely linea
in the rod lengthL—i.e., the drag becomes purely local.
contrast, we find that the well-established three-dimensio
result z i52ph/ ln(AL/a) applies for motion in the film par-
allel to the rod axis, provided thatL@,0. Here, however, the
effective rod radius becomes,0 rather than the physical ra
dius a, whena!,0. Closely related to~ii !, we find that the
rotational drag ~equivalently diffusion constant! depends
purely algebraically on the rod length.

We consider only the most simple class of rod geomet
in that we assume the rod to have a circular cross sectio
the plane perpendicular to its axis. We take the radius of
circle to bea, while the length of the rod is given byL. The
geometry of this rod of lengthL and radiusa is then param-
etrized by only one dimensionless ratio, the aspect ratir
defined by

r5
L

2a
. ~1!

The long axis of the rod may be assumed to be terminate
spherical end caps although, as will be seen below, our
culation is not sensitive to the fine structure of the ends
to our introduction of a short distance cutoff in the proble
We will argue below, however, that for the case of lar
aspect ratio rods, the detailed structure of the end caps
have a negligible effect on the overall drag.
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The fundamental distinction between the well-known
sult for the hydrodynamic drag on a rod in a homogeneo
three-dimensional viscous material and our result for
drag on a rod embedded in a viscous membrane coupled
viscous, three-dimensional fluid is the appearance of
length scale,0. This length enters since the ratio of a tw
dimensional interfacial viscosityhm and the usual viscosity
h f of the bulk fluid has dimensions of length,

,05
hm

( h
. ~2!

The denominator,(h is the sum of the viscosities of th
fluid above the interface~the superphase! and fluid below the
membrane~the subphase!, in the general case of two differ
ent viscosities~or one vanishing one, in the case of Langmu
films!. For a membrane embedded in a uniform fluid of v
cosityh, this is(h52h. In general, however, we may hav
two distinct nonzero viscosities. For a Langmuir monolay
we have(h5h, since we can neglect the viscosity of a
From here on, however, we shall simply use the length,0
andh f for the sum of the viscosities of the two bulk fluid
surrounding the membrane. Throughout this paper we m
sure all lengths in terms of the fundamental length,0, except
where explicitly stated to the contrary.

There are three independent drag coefficients or part
mobilities to determine in the problem. The mobility tens
is the inverse of the drag coefficient tensor. For translatio
motion, the mobility tensorm i j of the rod in the membrane i
defined by

v i
rod5m i j F j , ~3!

wherev i
rod is thei th component of the velocity of the rod an

F j is the j th component of the force applied to the rod. B
in-plane rotational symmetry combined with then̂→2n̂
symmetry of the rod, the mobility tensor must take the fo

m i j 5m uun̂i n̂ j1m'~d i j 2n̂i n̂ j !. ~4!

Herem' andm i are the mobility of the rod dragged perpe
dicular to and parallel to its long axis, respectively. In ad
tion to these two independent translational mobilities, th
is also one rotational mobilitym rot linking the angular veloc-
ity of the rod to the torque applied to that rod about its cen
of inversion symmetry.

It should be noted that there is no hydrodynamic torq
acting on the rod when it is dragged by any force act
through the center of inversion symmetry of the rod. W
refer to these forces as ‘‘central.’’ This can be seen from
following argument: Torque in the two-dimensional plane
a pseudoscalar that must be odd under time reversal. Su
pseudoscalar can only be built out of the antisymmetric co
bination of velocity vector of the rodv and a vector along the
axis of the rodn̂. That combinationeabvan̂b must also be
symmetricunder n̂→2n̂ since the rod is symmetric upo
such transformation. Thus the only available pseudoscala
disallowed. Therefore there is no rotational motion gen
3-2
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ated by this class of central forces and the rotational deg
of freedom decouples from the two translational degrees
freedom. We further note that boundary conditions that br
rotational symmetry or the application of a force at a po
other than the center of symmetry violate the above assu
tions and thus allow a coupling of the rotational and trans
tional motions of the rod.

We approach the solution of this problem by two comp
mentary means. In the first part of the calculation, in S
II A, we approximate the continuous rod by a series of dis
in analogy to the Kirkwood approximation used in the c
culation of the drag on a rod in a uniform, three-dimensio
viscous environment@17#. This calculation allows one to in
corporate the details of the shape of the rod in the resul
drag coefficient. Here the shape of the rod is parametrize
terms of its dimensionless aspect ratio. This method, h
ever, becomes numerically difficult in the limit of large a
pect ratios, i.e., for very long, thin rods. In this limit we ma
proceed by a second approximation that assumes the ro
be infinitely thin—i.e.,L@a. Here, we also restrict our at
tention to the limita!,0.

The outline of the remaining parts of this paper is as f
lows. In Sec. II A we develop the first of two calculation
methods for determining the drag on rodlike objects emb
ded in the membrane. Then in Sec. II B we demonstrat
second approach to determine the drag on a rod. This
proach is optimized to work in the limit of high aspect rat
rods and compliments the first approach which is most e
cient for rods of small aspect ratio, i.e., less elongated
jects. The reader who wishes to examine the results of th
calculations without delving into their details may skip
Sec. III, where the drag coefficients for translational mot
parallel and perpendicular to the long axis of the rod
computed for a variety rod geometries. In addition we e
plore the rotational drag on these rods there. Finally, we c
clude and discuss our results in Sec. IV.

II. THE RESPONSE FUNCTION

A. By the Kirkwood approximation

To incorporate the correct dynamics of this coupled s
tem, we use the results of our previous calculation@22# for
the displacement response of the membrane at a positix
due to the application of a force localized atx8. In the pre-
vious work where we considered a generic viscoelastic
terial, the response functiona(x2x8,v) determines thedis-
placementatx due to a sinusoidally oscillating force atx8. In
this paper, we specialize to the case of a purely viscous fi
so it is more natural to write the membranevelocityresponse
to a point force localized atx8. For consistency of notation
we write this velocity in terms of the displacement respon
2 iva. The velocity response function is given by

va~x!52 ivaab~x2x8! f b~x8!, ~5!

which can be written in a closed form as

aab~x!5a i~ uxu!x̂ax̂b1a i~ uxu!@dab2 x̂ax̂b#, ~6!
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where the scalar functions2 iva i ,2 iva' of the distance
between the point of the force application and the meas
ment of the velocity field are given by

2 iva i~x,v!5
1

4phm
Fp

z
H1~z!2

2

z2
2

p

2
@Y0~z!1Y2~z!#G

~7!

and

2 iva'~x,v!5
1

4phm
FpH0~z!2

p

z
H1~z!

1
2

z2
2

p

2
@Y0~z!2Y2~z!#G , ~8!

whereHn are Struve functions@23# andYn are Bessel func-
tions of the second kind. We notez5uxu/,0 is the distance
between the point of force application and the membra
velocity response measured in the flat membrane in unit
,0. At this point, it is important to distinguish between th
two response functions introduced: the mobility tensor of
rod m i j gives the velocity responsev i of the rod given a total
force F j acting on it through its center. The response fun
tion 2 iva i j (x2x8) gives the velocity responsev i(x) of the
two-dimensionalfluid at the positionx due the application of
a point force F j (x8) at another pointx8 in the two-
dimensional fluid. The main purpose of this and the follo
ing section of the paper is to derive the former respo
function for the rod from the latter response function for t
fluid, which we have previously calculated@22#.

We note also that, due to the linearity of the underlyi
low-Reynolds number hydrodynamics, the velocity respo
produced at some point in the membrane by a collection
point forces is simply the sum of the response functions
propriate to each point force individually

va~x!52 iv (
n51

N

aab~x2xn! f b~xn! ~9!

wheren indexes theN point forces located at locationsxn in
the film. Clearly the sum may be converted into an integ
for the case of a continuous force distribution; we will e
amine this limit for the case of an infinitely thin rod of finit
length in the following section.

Using this superposition principle we may determine t
effective drag on a rod by employing the two-dimension
analog of the Kirkwood approximation used to calculate
hydrodynamic drag on a rod in three dimensions. Spec
cally, we replace the rod of lengthL and cross-sectional ra
dius a by a set ofn11 disks of radiusa and intersphere
separationb chosen so that the total length of the rod
preserved, i.e.L5nb12a. See Fig. 1. In this way, the aspe
ratio of the rod,r5L/a can be fixed. The number of disks
of course, can be varied, however, we will always choo
that number to be the maximal number consistent with
given aspect ratio and the noninterpenetrability of the dis
We have also shown that computed hydrodynamic drag
3-3
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the rod is only weakly dependent on the number of disks~or
equivalently on the interdisk separation!.

Our strategy for computing the drag on the rod involv
setting the rod in uniform motion with unit velocity by im
posing some set of forcesf( i ), i 51, . . . ,n11 on then11
disks that make up the rod. Clearly the total force on the r
which is equal to the effective drag coefficient is simply t
sum of those forces:

Fa5 (
i 51

n11

f a
( i )5zabvb . ~10!

Using Eq.~9! we can compute the velocity field for a give
collection of point forces. However, to determine the effe
tive drag on the rod, one needs to insist that all the be
have thesamegiven velocity and determine the forces a
plied to them to ensure this result.

For definiteness, we first discuss the drag on the rod w
moving perpendicularly to its long axis. We may then d
rectly write out the analogous solution for motion parallel
the long axis of the rod. Motion of the rod along any arb
trary direction in the plane relative to its long axis can
obtained from these two results using the linearity of pro
lem. Thus these solutions span all possible linear motion
the rod. We will return to rotational motion shortly.

To calculate the drag on the rod moving perpendicula
its long axis~see Fig. 2!, we first apply Eq.~9! to determine
the velocity of all n11 spheres making up the rod as
function of as yet unknown forces. We insist only, based
the symmetry of this problem, that these forces are also
pendicular to the rod’s axis. Thus,

FIG. 1. Approximating the continuous rod by a series of balls
radiusa with center-to-center separationb. The number of balls and
their separation is chosen so that collection of balls has the s
length L as the original rod. For the best approximation to t
original rod, we maximize the number of balls for a given asp
ratio of the original rod.
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n11

a'
( i j ) f ( j ), ~11!

where we have suppressed the vectorial indices, definedv ( i )

to be the velocity of thei th sphere at positionx( i ), and re-
written the mobility tensor using Eq.~8! and the definition:

a'
( i j )5a'~x( i )2x( j )!. ~12!

The solution for the forces on the individual beads and th
using Eq.~10!, the total force on the rod and equivalently th
hydrodynamic drag is then obtained by inverting t
(n11)3(n11) matrix of response functionsa'

( i j ) . We call
this inverse matrixM i j defined by

Mi ,'
( i j )5

i

v
~a i ,'

21!( i j ). ~13!

The drag coefficient is then

z'5 (
i , j 51

n11

M'
( i j ) , ~14!

where we have used Eq.~10! and the fact that each bea
making up the rod has a velocity of unity. The analogo
expression from the drag on the rod moving parallel to
long axis is then obtained by replacing the terms of the m
bility matrix M'

( i j ) with M i
( i j ) since here all the bead ve

locities are parallel to the separation vectors between
beads. We then have

z i5 (
i , j 51

n11

Mi
( i j ) , ~15!

and the complete solution for motion of the rod in the pla
at an arbitrary anglef with respect to its long axis~see Fig.
2! is given by

f

e

t

FIG. 2. ~Color online! The upper figure shows the film from th
top looking down. The rod is shown as the black line and the film
shown in gray~blue online!. The rod is assumed to be embedded
the film, but not in the bulk subphase below it. This subphase
shown in the lower figure, which pictures the system from a s
view. In this paper the Newtonian subphase is assumed to be
nitely deep.
3-4
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z~f!5z icosf1z'sinf. ~16!

It is perhaps not surprising that the drag on the rod d
not have a simple, closed-form solution in the general ca
Here we examine the results of a numerical calculation
these drag coefficients. The results depend on two par
eters reflecting the relative magnitudes of three lengths
volved in the problem. We report our results in terms of t
two dimensionless numbers introduced above: the ove
length of the rod~i.e., the linear dimension of its long axis!
measured in units of,0 , L/,0, and the aspect ratio of the ro
L/a.

B. Thin-rod approximation

As a calculation tool, the above Kirkwood approximatio
has one shortcoming. If one wishes to explore the drag o
very thin rod compared to its length, i.e., one of high asp
ratio, one is compelled to use a large number of disks
fact, the number of disks is linearly proportional to the asp
ratio of the rod being modeled. Since even numerically
verting a large matrix is cumbersome, the penultimate ste
the procedure outlined above becomes slow in the high
pect ratio limit. Fortunately, there is a complementary a
proach to the Kirkwood scheme that involves inverting
more manageable matrix and is still valid for exploring ro
of infinite aspect ratio, or specifically, rods of finite lengt
but vanishing thickness. Since it is precisely in this limit
large aspect ratio that the Kirkwood approximation becom
intractable, the combination of these two approaches all
us to study the drag on rod for both large and small asp
ratios.

The thin-rod approximation starts from the assumpt
that one can take the limit of an infinitely thin rod from th
start. Thus the velocity field at the pointx due to a continu-
ous distribution of force densities along the rod,f(xx̂) that
lies along thex̂ axis fromx52L/2 to x5L/2 takes the form

v i~x!52 ivE
2L/2

L/2

a i j ~x2px̂! f j~px̂!dp. ~17!

The indices in the above equation represent the usual ve
rial indices; there are no disks to count here. There has b
a simplification introduced in Eq.~17!. The integral over the
force densityf (x) which in principal extends over the entir
volume of the rod has been made one dimensional by ass
ing the rod to be infinitely thin. This simplification is pos
sible since the short distance behavior of the response f
tion includes only an integrable singularity.

After writing Eq. ~17! one is still faced with the problem
of inverting the equation. After all, the assumed rigidity
the rod requires thatv(x) be constant along the rod, but forc
on any length element of the infinitely thin rod are unknow
as they comprise both the externally applied for and, as
undetermined internal forces of constraint. Our method
solution is fundamentally identical to that used in the prec
ing section; we impose a unit velocity field on the rod a
determine the force density required to affect his result,f(x).
We use this intermediate result by integrating the linear fo
02150
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density over the length of the rod to find the total for
necessary to move the rod with a velocity of unity. This for
is clearly just the drag coefficient that we sought.

The inversion of Eq.~17! proceeds by first expanding th
linear force density in Legendre polynomialsPn(2x/L).
From symmetry considerations we can expand the force d
sity in even Legendre polynomials, i.e.,

f ~x!5 (
n50

N

c2nP2n~2x/L ! ~18!

for both the perpendicular and parallel dragging calculatio
while we expand the force density in odd Legendre functio
to study the rotational drag on the object. In what follow
we only describe in detail the case of linear drag, althou
the rotational case is very similar. The coefficientscn are as
yet unknown, since the functionf (x) is undetermined. In
principle, since the Legendre polynomials form a compl
set on the interval21 to 11, any physical force density ca
be expressed as in Eq.~18! providedN be taken to infinity. In
practice we find excellent numerical results even when tr
cating this sum to just the first few terms, taking into accou
the symmetry of the force distribution about the center of
rod. We discuss in more detail below the meaning of num
cal accuracy as used in the present context.

Using the expansion of the force density from Eq.~18! we
can rewrite Eq.~17! as

v~x!52 iv (
n50

N

c2nE
2L/2

L/2

a~x2zx̂!P2n~2z/L !dz. ~19!

To further simplify the analysis, we relax the requireme
that the velocity field be equal to unity at all points along t
rod. Rather we impose this condition at a finite set of poi
0<pi<L/2 along the rod. Given that we intend to trunca
the Legendre function expansion of the force density atN,
we can impose the velocity condition at a maximum ofN
11 points without creating an over-determined system
equations. Thus we require that

v~pi x̂!50, for i 50, . . . ,N, ~20!

152 iv (
n50

N

c2nE
2L/2

L/2

a~ x̂pi2zx̂!P2n~2z/L !dz

for i 50, . . . ,N. ~21!

Now finding the force distribution along the rod requir
only the inversion of an (N11)3(N11) matrix,Ni j whose
components are defined by

Ni j 52 ivE
2L/2

L/2

a~ x̂pi2zx̂!P2 j~2z/L !dz. ~22!

Finally, the total force on the rod is found by reconstructi
the force density from its Legendre polynomial expans
and integrating the resulting expression over the entire r
That force density is given by Eq.~18! where the coefficients
3-5



h
th

dd

o
a
t

o
e

w
s

ar
tr

es

a

s
-
,
d
t

m

m
hi
h
ite

ct-
p-

the
is.

to-
sis-
on.
the

ld
pe

the
ob-

of

in
n-

of
lar
ular

ec ect

od
o

LEVINE, LIVERPOOL, AND MacKINTOSH PHYSICAL REVIEW E69, 021503 ~2004!
ck are determined by solving the set of equations Eq.~20!
using the inverse of the matrix defined in Eq.~22!. Thus we
find

ck5(
i 50

N

N ki
21 . ~23!

Due to the orthonormality of the Legendre polynomials, t
total force is given entirely by the coefficient of the zero
Legendre polynomial,c0. Similarly, the total torque in the
case of rotations is given by the coefficient of the first o
Legendre polynomial.

There remains one more aspect to this calculation. H
does one determine the accuracy of the approximation
how can one optimize that accuracy by the selected se
points along the rodxi ,i 50, . . . ,N, at which to impose the
velocity boundary condition? We first judge the accuracy
the result by calculating the velocity field along the rod. Id
ally the value of the velocity should be unity. Because
have only imposed that boundary condition at a discrete
of points along the rod, the velocity field along the rod v
ies. We find that with only eleven points chosen symme
cally about the center of the rod~i.e., N55 above!, the ve-
locity field deviates from unity by at most 5% in most cas
However, we find that the drag coefficient~defined by the
ratio of total force to average velocity! converges much more
rapidly with N. Specifically, we find a variation of less than
percent in the drag coefficient in all cases, so long asN
.2. Below, we report our results forN55. We thus are able
to achieve better than 1% accuracy with only a 636 matrix.

III. RESULTS

Figure 3 shows the parallel drag coefficient for a rod a
function of its length,L/,0 in reduced units. Two finite as
pect ratios, as well as the case of infinite aspect ratio, i.e.
infinitely thin rod, are shown in this figure. As expecte
based on the above discussion, the shape of the rod and
its aspect ratio do not affect the drag on the rod in the li
that all dimensions of the rod are small compared to,0.
Essentially all small rodlike particles behave in the me
brane as if they were infinitely thin. For rods longer than t
crossover length, the shape of the rod clearly affects its
drodynamic drag as seen by the deviation of the fin

FIG. 3. Parallel drag coefficient of a rod for various asp
ratios.
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aspect-ratio curves from ther5` curve shown as the solid
line in the figure. It should be noted that the finite-aspe
ratio calculations were performed using the Kirkwood a
proximation, while the drag on the infinitely thin rod (r
5`) is calculated using the thin-rod approximation.

The analogous calculation can be made for the drag on
rod moving in a direction perpendicular to its long ax
These results are shown in Fig. 4.

The convergence of the finite-aspect-ratio rod results
wards the infinite aspect ratio results clearly tests the con
tency of the two numerical approaches to drag calculati
To study in more detail the aspect ratio dependence of
drag we plot the drag coefficient for parallel motion~Fig. 5!
and perpendicular motion~Fig. 6!.

In both, Figs. 5 and 6 the length of the rod was he
constant so thatL/,0520. As discussed above particle sha
is less relevant for particles with dimensions less than,0 so
a rod of significantly longer length was chosen to explore
aspect-ratio dependence of the rod’s drag coefficient. To
serve the importance of the particle size~measured in the
natural units of,0) we plot the aspect-ratio dependence
the drag coefficient of a rod of length 0.1,0. The drag coef-
ficient of the rod moving parallel to its long axis is shown
Fig. 7, while the drag coefficient of the rod moving perpe
dicular to its long axis is shown in Fig. 8.

It may be observed from a comparison of the pairs
corresponding figures for parallel drag and perpendicu
drag, such as 7 vs 8, 5 vs 6, and 3 vs 4, that the perpendic

t FIG. 4. Perpendicular drag coefficient of a rod for various asp
ratios.

FIG. 5. The parallel drag coefficient of a finite-aspect-ratio r
as a function of aspect ratior. The result for an infinite-aspect-rati
is shown as a horizontal line. The length of the rod is 20,0.
3-6



ef

e
ng

e
en
x
o

o
t
he
2
t
o
e
n-

d
a
i

-

the
he
cts

as

icu-
t.

b-
he
al

on
gh

ales
-
es

g
e

ct

d

od
o

ct-

d is

ag
ect
s a
wo

MOBILITY OF EXTENDED BODIES IN VISCOUS . . . PHYSICAL REVIEW E 69, 021503 ~2004!
drag coefficient is strictly larger than the parallel drag co
ficient for rods of all aspect ratios~greater than one, i.e.,not
disks! and lengths. The magnitude of the difference betwe
these two drag coefficients, however, depends on the le
of the rod compared with the natural length,0. For lengths
such asL,,0, the two drag coefficients converge to th
same value and the difference between these coeffici
grows monotonically with increasing rod length. As an e
ample, the two drag coefficients are plotted as a function
rod length for infinite-aspect-ratio rods in Fig. 9.

The two coefficients begin to separate at rod lengths
the order of,0. This differs not only from the small rod limi
but also from the case of motion in bulk fluids, where t
two drag coefficients differ only by a constant factor of
The length dependence here can be understood by noting
,0 sets the natural length scale over which the tw
dimensional fluid velocity field can vary. In detail, what w
find is that the parallel drag in the film is essentially u
changed from the bulk, three-dimensional drag, in that

z i5
2phL

ln~0.43L/,0!
, ~24!

where the prefactor in the logarithm has been determine
within 1%. Comparing with the result for drag of a rod in
bulk fluid, the effective cross-sectional radius of the rod

FIG. 6. The perpendicular drag coefficient of a finite-aspe
ratio rod as a function of aspect ratior. The result for an infinite-
aspect ratio is shown as a horizontal line. The length of the ro
20,0.

FIG. 7. The parallel drag coefficient of a finite-aspect-ratio r
as a function of aspect ratior. The result for an infinite-aspect rati
is shown as a horizontal line. The length of the rod is 0.1,0.
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now of the order of,0 ~for a!,0). On one hand, the three
dimensional result recovered is not surprising, given that,0
corresponds physically to a length scale beyond which
fluid viscosity dominates the film viscosity. Furthermore, t
corresponding fluid velocity field in this case both respe
the assumed incompressibility of the film, and is the same
that of rod motion in a fluid above this length,0. Thus,,0
determines the effective aspect ratio. The case of perpend
lar motion, on the other hand, is qualitatively very differen
We find

z'52phL. ~25!

Here, the corresponding bulk fluid velocity field in the a
sence of the film is inconsistent with incompressibility of t
film. Specifically, there is a nonvanishing two-dimension
divergence of velocity field restricted to the plane of moti
for motion perpendicular to the rod axis. Hence, althou
only the bulk fluid viscosityh enters this expression~to be
expected since dissipation is dominated at the largest sc
by the fluid viscosity!, the in-plane incompressibility re
quires that the fluid velocity field extends over distanc
comparable to the largest dimensionL. This means that the
usual hydrodynamic coupling of portions of the rod~repre-
sented by the logarithm! is not present. The result is a dra
coefficient purely linear in rod length. In other words, th
drag is effectivelylocal in character.

-

is

FIG. 8. The perpendicular drag coefficient of a finite-aspe
ratio rod as a function of aspect ratio,r. The result for an infinite-
aspect ratio is shown as a horizontal line. The length of the ro
0.1,0.

FIG. 9. A comparison of the perpendicular and parallel dr
coefficients as a function of rod length for a rod of infinite-asp
ratio. Note that the difference between the two coefficients i
monotonically increasing function of rod length and that the t
coefficients begin to diverge at the lengthL.,0.
3-7
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LEVINE, LIVERPOOL, AND MacKINTOSH PHYSICAL REVIEW E69, 021503 ~2004!
Finally, we note the result for the rotational drag coef
cient on the rod which gives the required torque applied
rod about the center to generate an angular velocity of
rod equal to unity. As discussed in the previous sections,
calculation proceeds analogously to those of the perpend
lar and parallel drag coefficients. We plot the rotational d
coefficient divided byL2 for a rod of infinite-aspect ratio a
a function of the reduced length in Fig. 11. The essen
feature of this plot is that rotational drag coefficient scales
L2 for rods smaller than,0 and then asL3 for rods longer
than this natural length. Thus, we find purely algebraic
havior in both limits.

IV. SUMMARY

Using the response function previously calculated@22# we
have calculated the hydrodynamic drag on a rod moving
low-Reynolds number in a viscous film coupled to fluid su
phase and superphase of arbitrary viscosity. The drag co
cient on the rod is a tensorial object with two independ
parameters that correspond to the drag coefficient of the
moving along its long axis~parallel! and in the direction
perpendicular to its long axis. We have also computed
rotational drag coefficient.

These results were calculated numerically using t
methods with complementary regimes of validity; the Kir

FIG. 10. The solid line is the ratio of the perpendicular dr
coefficient to the parallel drag coefficient calculated in the thin-
approximation. The dotted lines are two different asymptotic fits
this curve corresponding to short rods and long rods. For short
this fit is to the constant one consistent with the Saffman-Delbr¨ck
result. The large rods fit is to a simple logarithm in length as d
cussed in the text.

FIG. 11. The rotational drag coefficient of a rod of infinit
aspect-ratio plotted vs the length of the rod.
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wood method, which approximates the rod as a series
non-interpenetrating disks linked together and is well sui
to calculating the drag coefficients for rods of smaller asp
ratio. The aspect ratio is set by choosing the number of th
noninterpenetrating disks to make up the rod. For very lo
thin rods having higher aspect ratios, this method becom
numerically cumbersome since it involves inverting
n3n matrix for a rod made up ofn disks and reaching
higher aspect ratios requires adding more disks. To exp
the limit of very high aspect ratios, one can perform calc
lations in the infinite-aspect-ratio limit. These two metho
can be shown to be consistent numerically; in the limit o
large number of disks, we have checked numerically that
results of the Kirkwood method approach those of the th
rod approximation.

It is instructive to contrast our results with those for t
three-dimensional case. In three dimensions, there i
length-independent factor of 2 difference between the pa
lel drag coefficient and the perpendicular drag coefficien

z i
3d5

2phL

lnS AL

a D , ~26!

z'
3d52z i

3d. ~27!

The appearance of the logarithm in Eq.~26! signals the break
down of a purely local drag~or, ‘‘free draining’’!. In other
words, the long-range hydrodynamic interactions betwe
various segments of the rod cause the drag on the rod t
reducedfrom simple linear dependence onL as would be the
case if the hydrodynamic drag on each element of the
were purely local in character and thus the total drag addi
along the length of the rod. Instead, the motion of one par
the rod sets up long-ranged fluid flows that effectively dr
other parts of the rod forward.

The reduced dimensionality of the flow in the film qua
tatively changes this result as shown in Eq.~24! and Fig. 9.
From Fig. 10 it is clear that the two drag coefficients a
equal in the limitL!,0 ~the dotted line for smallL/,0 is
simply unity!, while in the limit thatL@,0 they differ sub-
stantially. In fact, as we argue here, we see an appar
purely local drag per unit length. Hence, the ratio of the t
drags for long rods is given simply by the logarithm d
scribed above, as can be seen by the asymptotic fit t
logarithm that is illustrated by the dotted line on the right
the figure.

On one hand, while the dimensions of the rod are sm
(!,0), the dissipation is governed primarily by the film
which is insensitive to orientation and aspect ratio, just a
is to size: there is only a weak, logarithmic dependence
size in this limit @8#. On the other hand, when the rod b
comes longer~than,0), the dependence on both orientatio
and aspect ratio becomes stronger. Here, the th
dimensional fluid governs the dissipation, and we know t
orientation and especially size matters in this limit. A ma
difference, however, arises when we compare parallel mo
with perpendicular motion. In the latter case, although
dissipation is governed primarily by the fluid, the film~along

d
o
ds

-
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MOBILITY OF EXTENDED BODIES IN VISCOUS . . . PHYSICAL REVIEW E 69, 021503 ~2004!
with its assumed incompressibility and no-slip condition!
imposes a very different boundary condition on the flo
from what we would have in a bulk fluid alone. The veloci
field vW' in the film satisfies¹W'•vW'50, which is inconsistent
with the Stokes flow in perpendicular motion. Considered
a two-dimensional field,]xvx1]yvy is nonzero in the plane
of motion in this case. This added condition can only
crease the drag for perpendicular motion relative to t
without the film present. In contrast, since this boundary c
dition is consistent with the flow field for parallel motion, w
expect to find quantitative agreement with the parallel m
bility in a bulk fluid when the film’s viscosity becomes irre
evant~small ,0).

For the perpendicular motion, not only is the drag
creased relative to that for a bulk fluid but the dependenc
purely linear, as shown in Fig. 9. The linear dependence i
indication of the absence of the hydrodynamic effects
scribed above, which reduce the drag by cooperativity
sections along the rod. Here, the drag is simply proportio
to the length of the rod. This can be seen from the additio
boundary condition mentioned above. Although the dissi
tion for long rods is governed by the fluid viscosity, th
characteristic scale for this flow is that of the whole ro
Unlike the case of perpendicular motion in a simple flu
where there is a short path of order the rod diametera around
the rod, the in-plane incompressibility forces the flows to
around the long way. Hence, the total absence of the lo
rithm, and the simple, purely local drag is proportional
length. This can be seen in Fig. 10, where we show the r
of the drag coefficients is just given by the logarithmic te
coming from the hydrodynamics of rods in ordinary fluid
Finally, we note that these observations also explain why
rotational drag is purely algebraic for long rods, since ro
tions exhibit a purely local drag or rod segments perpend
lar to the motion. Specifically, as shown in Fig. 11, we fin

zR.0.16phL3. ~28!

In summary we have developed a highly adaptable fra
work to compute the drag on irregularly shaped objects e
bedded in a viscous membrane or interface. As a demon
tion of this method we have computed the drag on a rigid
in this two-dimensional fluid system viscously coupled to
fluid subphase and compared our results to both the w
known results for the drag on a rod in a three-dimensio
viscous fluid and the result for the drag on a disk embed
in a membrane~due to Saffman and Delbru¨ck!, which is
applicable to, e.g., the diffusion of small transmembrane p
teins. First, we find in accordance with the results of pre
ous investigators@7,10,11# that there is an inherent lengt
scale, in the system set by the ratio of the two-dimension
viscosity of the membrane to the three-dimensional visco
of the subphase fluid. The existence of such a length sca
made obvious by dimensional analysis. The importance
this length scale on the drag tensor associated with var
objects embedded in the membrane has been discuss
this work. In brief, for objects with characteristic dimensio
less than,, the Saffman-Delbru¨ck result is recovered from
our more general computation. The drag coefficient ten
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for all such small objects is simply that of a small disk. It
isotropic and independent of particle size except for logar
mically small corrections. For objects significantly larg
than ,, our analysis shows that drag tensor becomes b
size dependent and anisotropic for rodlike objects. Based
our calculations restricted to rodlike objects, it is neverth
less clear that these general statements apply to objec
arbitrary shape as well. In particular for these rods, we fi
that the parallel drag coefficient matches that of a r
dragged parallel to its long axis in a three-dimensional v
cous fluid. For the same rod dragged perpendicular to
length a qualitatively different result is found: the effectiv
drag coefficient is logarithmically enhanced compared to
three-dimensional counterpart due to the breakdown of lo
range hydrodynamic interactions in the interface and m
mentum transfer to the bulk subphase.

While the heuristic importance of this new length scale
clear, we have not yet estimated its size for typical me
branes. As a starting point, we note that if the membra
interfacial viscous were equal to that of the bulk, subpha
this length would naturally be the thickness of the me
brane, i.e., a molecular length. For a short chain surfac
monolayer or lipid bilayer this length would then be of th
order of 1–2 nm, respectively. However, it is expected t
the internal viscosity of the membrane/interface is typica
much larger than that of the~typically aqueous! subphase
and this length, is consequently multiplied by a factor equ
to this viscosity enhancement of the membrane/interfa
material. It is not unreasonable to suppose that,
;10–100 nm. Thus we expect to see significant deviati
from the Saffman-Delbru¨ck result both for lipid rafts and
protein aggregates that surpass such lengths. At the s
time, it is clear that the standard Saffman-Delbru¨ck result
should explain the observed mobility of individual tran
membrane proteins.

Further experimental tests of the above theory require
analysis of tracer particle diffusion data for a membra
interface bound objects of various sizes. Based on these
culations, the observation of anisotropic diffusion consta
for these longer rodlike objects would be a clear indicat
of phenomena unexplainable by the Saffman-Delbru¨ck
analysis. After testing these basic mobility calculations, o
could then use these results to do both standard translat
microrheology on membranes and interfaces@12,13,22# as
well as experiments on rotational microrheology@24#. Such
studies will be particularly interesting in studying the pro
erties of broken rotational phases of lipid monolayers such
hexatic phases@25#. In addition one should be able to exten
the present calculations to explore the implications of me
brane hydrodynamics upon diffusion limited aggregation
membranes. Such aggregation processes play an intere
role in the formation of transmembrane protein aggrega
lipid rafts, and colloidal aggregates on large, unilamel
vesicles@26#.

ACKNOWLEDGMENTS

A.J.L. would like to thank C. Alonso and other membe
of the Zasadzinski group for frequent discussions. The
3-9



or
ed
ty
rs

l
in

os.

LEVINE, LIVERPOOL, AND MacKINTOSH PHYSICAL REVIEW E69, 021503 ~2004!
thors acknowledge the hospitality of the Kavli Institute f
Theoretical Physics where most of this work was perform
In addition A.J.L. would like to acknowledge the hospitali
of the Vrije Universiteit, Amsterdam. Finally, the autho
m

A

M.

r,

h.

.

. A

n-

n-

n-

02150
.
would especially like to thank D.K. Lubensky for helpfu
conversations on this problem. This work was supported
part by the National Science Foundation under Grant N
DMR98-70785 and PHY99-07949.
ett.

on,

s,
-

re

.

@1# R.A. Stein, E.J. Hustedt, J.V. Staros, and A.H. Beth, Bioche
J. 41, 1957~2002!.

@2# P.J.R. Spooner, R.H.E. Friesen, J. Knol, B. Poolman, and
Watts, Biophys. J.79, 756 ~2002!.

@3# P. Steffen, P. Heinig, S. Worlitzer, Z. Khattariand, and T.
Fischer, J. Chem. Phys.115, 994 ~2001!.

@4# J.F. Kingler and H.M. McConnell J. Phys. Chem.97, 6096
~1993!.

@5# K. Simons and E. Ikonen, Nature~London! 387, 569 ~1997!.
@6# A. Pralle, P. Keller, E.L. Florin, K. Simons, and J.K.H. Horde

J. Cell Biol. 148, 997 ~2000!.
@7# B.D. Hughes, B.A. Pailthorpe, and L.R. White, J. Fluid Mec

110, 349 ~1981!.
@8# P.G. Saffman and M. Delbru¨ck, Proc. Natl. Acad. Sci. U.S.A

72, 3111~1975!; P.G. Saffman, J. Fluid Mech.73, 573~1976!;
see also H.A. Stone,ibid. 409, 165 ~2000!.

@9# H.A. Stone and H.M. McConnell, Proc. R. Soc. London, Ser
448, 97 ~1995!.

@10# D.K. Lubensky and R.E. Goldstein Phys. Fluids8, 843~1996!.
@11# A. Ajdari and H.A. Stone, J. Fluid Mech.369, 151 ~1998!.
@12# E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F.C. MacKi

tosh, and D. Chatenay, Phys. Rev. Lett.85, 457 ~2000!.
@13# E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F.C. MacKi

tosh, and D. Chatenay, Phys. Rev. E63, 021904~2001!.
@14# E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F.C. MacKi

tosh, and D. Chatenay, Phys. Rev. Lett.87, 088103~2001!.
.

.

@15# B. Maier and J.O. Radler, Macromolecules33, 7185~2000!.
@16# H. Lamb, Hydrodynamics, 6th ed.~Dover Publications, New

York, 1945!.
@17# See, for example, M. Doi and S.F. Edwards,The Theory of

Polymer Dynamics~Clarendon Press, Oxford, 1986!, Chap. 8.
@18# G.K. Batchelor,Introduction to Fluid Dynamics~Cambridge

University Press, Cambridge, 1967!.
@19# K. Facto and A.I. Levine~unpublished!.
@20# J. Ding, H.E. Warriner, and J.A. Zasadzinski, Phys. Rev. L

88, 168102~2002!.
@21# C.F. Brooks, G.G. Fuller, C.W. Frank, and C.R. Roberts

Langmuir 15, 2450 ~1999!; J.Q. Ding, H.E. Warriner, J.A.
Zasadzinski, and D.K. Schwartz,ibid. 18, 2800~2002!.

@22# Alex J. Levine and F.C. MacKintosh, Phys. Rev. E66, 061606
~2002!.

@23# Handbook of Mathematical Functions with Formulas, Graph
Mathematical Tables, edited by M. Abromowitz and I.E. Ste
gun ~National Bureau of Standards, Washington D.C., 1964!.

@24# Z. Cheng and T.G. Mason, Phys. Rev. Lett.90, 018304~2003!.
@25# See, for example, J. Ignes-Mullol and D.K. Schwartz, Natu

~London! 410, 348 ~2001!; also Michael Dennin~private com-
munication!.

@26# Anthony Dinsmore~private communication!; see also A.D.
Dinsmore, M.F. Hsu, M.G. Nikolaides, M. Marquez, A.R
Bausch, and D.A. Weitz, Science298, 1006~2002!.
3-10


